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Abstract: This study reviewed the prediction of fine particulate matter (PM2.5) from satellite aerosol
optical depth (AOD) and summarized the advantages and limitations of these predicting models.
A total of 116 articles were included from 1436 records retrieved. The number of such studies has been
increasing since 2003. Among these studies, four predicting models were widely used: Multiple Linear
Regression (MLR) (25 articles), Mixed-Effect Model (MEM) (23 articles), Chemical Transport Model
(CTM) (16 articles) and Geographically Weighted Regression (GWR) (10 articles). We found that there
is no so-called best model among them and each has both advantages and limitations. Regarding
the prediction accuracy, MEM performs the best, while MLR performs worst. CTM predicts PM2.5

better on a global scale, while GWR tends to perform well on a regional level. Moreover, prediction
performance can be significantly improved by combining meteorological variables with land use
factors of each region, instead of only considering meteorological variables. In addition, MEM has
advantages in dealing with the AOD data with missing values. We recommend that with the help of
higher resolution AOD data, future works could be focused on developing satellite-based predicting
models for the prediction of historical PM2.5 and other air pollutants.

Keywords: aerosol optical depth; PM2.5; satellite retrieving; Mixed-Effect Model; Chemical
Transport Model
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1. Introduction

According to the World Health Organization’s report in 2014, 3.7 million premature deaths
related to ambient air pollution occurred around the world in 2012 [1]. Ambient air pollutants include
particulate matter, ozone, nitrogen dioxide, sulfur dioxide, and other contaminants. Fine particulate
matter with aerodynamic diameters smaller than 2.5 µm (PM2.5) is the most problematic of these
pollutants. PM2.5 particles can enter into the alveoli, subsequently being retained in the lung
parenchyma [2]. Due to the toxicological effects of the resulting inflammation and oxidative stress [3],
PM2.5 can cause severe cardiovascular diseases, respiratory diseases and even lung cancer [4,5]. A study
of the global burden of disease study in 1990–2010 ranked ambient PM2.5 concentrations ninth out of
all health risk factors [6]. PM2.5 has therefore played an important role in the area of air pollution and
environmental health [7–10].

However, most pollutant concentration information was obtained from ground monitoring
stations, which have many limitations. These stations are limited in number, unequally distributed [7,11]
and have different measure frequency ranges [12]. These limitations may affect the geographical
and demographical range of studies, resulting in an information bias and reducing the confidence
in the results of exposure response studies [13]. Furthermore, the temporal and spatial variation of
PM2.5 is complex, and continuous monitoring of PM2.5 is absent in many countries and regions [14].
For example, PM2.5 was not included in China’s national monitoring system until 2013. Remote
sensing techniques could therefore allow the collection of long period continuous PM2.5 data on large
spatial scales over China [15].

Numerous researchers have attempted to estimate ground PM2.5 levels using satellite-derived
atmospheric aerosol optical depth (AOD) [16], which is the aerosol extinction coefficient of accumulated
points in the vertical direction [4,16,17]. Satellite-derived AOD research began in the mid-1970s, and, in
2003, Wang et al. [16] initiated the use of Moderate Resolution Imaging Spectrometer (MODIS) AOD in
the prediction for ground level PM2.5 though linear correlation. Liu et al. [18] came up with Chemical
Transport Model (CTM) in 2004, and, in 2011, Lee et al. [19] created the day-specific Mixed-Effect
Model (MEM) using MODIS AOD. In recent years, PM2.5 levels have been estimated using a variety of
satellite sensors, including the MODIS [20,21], the Multi-Angle Imaging Spectrometer (MISR) [4,20,22],
the Geostationary Operational Environment Satellite (GEOS) [23,24], Polarization of Earth’s Reflectance
and Directionality (POLDER) [25,26], the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) [27,28],
the Ozone Monitoring Instrument (OMI) [29] and the Cloud-Aerosol Lidar with Orthogonal
Polarization (CALIOP) [29,30]. Although studies of this kind are becoming more common,
prediction results have been unstable and varied significantly between different regions [31,32].
Additionally, different studies have used different methods of dealing with missing AOD data [7,33–36].
The objective of this study is to review previous studies in order to compare existing PM2.5 predicting
models based on satellite AOD and illustrate their advantages and limitations. This could provide a
helpful reference for future satellite-based PM2.5 predicting studies.

2. Methods

2.1. Subject of This Review

What is the relationship between PM2.5 concentrations predicted from aerosol optical depth
retrieval and PM2.5 concentrations measured on the ground?

2.2. Search Criteria

We searched the following electronic databases prior to 30 June 2016: Web of Science (WOS),
PubMed, Engineering Index (EI), Nature, Elsevier Science Direct, Wiley, Springer, and Taylor and
Francis. Keywords used in the searches included: aerosol optical depth (AOD, aerosol optical
thickness, AOT), fine particulate matter (PM2.5), satellite data, satellite remote sensing, satellite
derived, and satellite retrieved. These keywords were searched under the categories of “subject”,
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“title”, and “keywords” respectively, connected through logical combinations of “and” and “or”.
When searching in Web of Science, for example, we used the following combination of keywords:
((“aerosol optical depth”) OR (“AOD”) OR (“aerosol optical thickness”) OR (“AOT”) OR (“satellite
data”) OR (“satellite remote sensing”) OR (“satellite derived”) OR (“satellite retrieved”)) AND ((“fine
particulate matter”) OR (“PM2.5”)).

2.3. Inclusion and Exclusion Criteria

The inclusion criteria are as follows: (1) papers published in the peer-reviewed journals before
30 June 2016; (2) empirical research utilizing both satellite AOD data and ground PM2.5 data;
and (3) papers incorporating PM2.5 predicting models based on satellite-derived AOD and model
evaluation. During the process of abstract and full texts reviewing, studies were excluded according
to these criteria: (1) abstracts and conferences only; (2) studies using AOD data only or PM2.5 data
only, and studies without R2 values; and (3) satellite-based PM2.5 predicting studies conducted over
the ocean or special terrains (such as mountains), or during the following natural and anthropogenic
events: land (forest) fires, dust storms, volcanic eruptions, and fuel combustion events. We reviewed
all the selected studies in detail and summarized their main features.

3. Results

After screening 1436 identified studies and assessing the eligibility of the remaining studies,
we selected 116 articles for our review that are primarily relevant to the satellite-based PM2.5 predicting
model (Figure 1). The study areas, results, models used and other basic characteristics of all included
studies are summarized in Table 1.
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Table 1. Characteristics of included studies.

Author (Published Year) Study Area Study Period Source of AOD Retrieved Model R2 of Model (CV-R2)

Wang et al. (2003) [16] U.S. 2002 MODIS LC 0.960 a (Nss = 1, Nms = 7)

Engel-Cox et al. (2004) [31] U.S. 2002 MODIS LC 0.185 a,b

Liu et al. (2004) [18] U.S. 2001 MISR CTM 0.656 a,b (Yearly, Nms = 1268)

Hutchison et al. (2005) [37] U.S. 2003–2004 MODIS LC 0.160~0.250 a,b (Nms = 51)

Liu et al. (2005) [38] U.S. 2001 MISR MLR 0.430 a,b (Nms = 346)

Chu et al. (2006) [39] U.S. 2002 MODIS MLR 0.723 a (New York), 0.757 a (Chicago), 0.774 a (Houston) (Nms = 350 for U.S.)

Engel-Cox et al. (2006) [40] U.S. 2004 MODIS MLR 0.423 a

Gupta et al. (2006) [41] Global 2000–2002 MODIS MLR 0.960 a,b (Nss = 26, Nms = 113)

Kacenelenbogen et al. (2006) [26] France 2003 POLDER MLR 0.490 a,b (when the matched data is 78),
0.310 a,b (Nms = 28, when the matched data is 1974)

Koelemeijer et al. (2006) [42] Europe 2003 MODIS LC 0.360 a,b (Nms = 88)

van Donkelaar et al. (2006) [43] Global 2000–2001 MODIS, MISR CTM 0.476 a,b (MODIS, Nms = 199),
0.325 a,b (MISR, Nms = 199)

Kumar et al. (2007) [44] India 2003 MODIS MLR 0.700 a,b (Point/disaggregate-level analysis, Nms = 113),
0.610 a,b (Aggregate/pixel-level analysis, Nms = 113)

Liu et al. (2007) [13] U.S. 2005 MISR CTM

Eastern: 0.560 a,b (with fractional AOD, Nms = 130), 0.420 a,b (with total AOD,
Nms = 130)
Western: 0.570 a,b (with fractional AOD, Nms = 130), 0.210 a,b (with total AOD,
Nms = 130)

Liu et al. (2007) [20] U.S. 2003 MODIS, MISR GLM 0.510 a,b (MODIS, St. Louis and its surrounding counties, Nms = 22),
0.620 a,b (MISR, St. Louis and its surrounding counties, Nms = 22)

Wallace et al. (2007) [45] Canada 2015 MODIS MLR 0.760 b (Nms = 34)

Gupta et al. (2008) [46] U.S. 2000–2006 MODIS MLR 0.520 a,b (Daily, Nms = 14),
0.620 a,b (Hourly, Nms = 14)

Gupta et al. (2008) [11] U.S. 2000–2005 MODIS MLR 0.270 a,b (Nms = 38)

Hutchison et al. (2008) [47] U.S. 2003, 2004 MODIS MLR
0.221 a,b (20 August–15 September, Hourly, Houston-Beaumont-Galveston
area),
0.960 a,b (6–7 September, Hourly, Houston-Beaumont-Galveston area)

Kumar et al. (2008) [48] India 2003 MODIS MLR 0.700 a,b (Point/disaggregate-level analysis, Delhi and its environs, Nms = 113),
0.610 a,b (Aggregate/pixel-level analysis, Delhi and its environs, Nms = 113)

Paciorek et al. (2008) [24] U.S. 2004 MODIS, MISR,
GEOS GAM 0.360 a,b
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Table 1. Cont.

Author (Published Year) Study Area Study Period Source of AOD Retrieved Model R2 of Model (CV-R2)

Al-Hamdan et al. (2009) [49] U.S. 2000–2003 MODIS MLR 0.661~0.706 a,b (MODIS), 0.874 a,b (B-Spline, merged AQS/MODIS),
0.949 a,b (IDW, merged AQS/MODIS)

Green et al. (2009) [50] U.S. 2003–2007 GEOS, MODIS MLR 0.480 a (GEOS, Nss = 1), 0.740 a (MODIS, Nss = 1)

Gupta et al. (2009) [51] U.S. 2004–2006 MODIS MLR 0.365 a,b (TVM, Nms = 85), 0.466 a,b (MVM, Nms = 85)

Gupta et al. (2009) [52] U.S. 2004–2006 MODIS ANN 0.608 a,b (Nms = 85)

Hu et al. (2009) [32] U.S. 2003–2004 MODIS GWR, LC 0.449 a,b (LC, East), 0.048 a,b (LC, West); 0~0.580 a,b (GWR, Nms = 877)

Liu et al. (2009) [23] U.S. 2003–2005 GEOS GAM 0.790 a,b (Adjusted, Nms = 32), 0.480 a,b (Unadjusted, Nms = 32);
0.780 *,a,b (Adjusted, Nms = 32), 0.460 *,a,b (Unadjusted, Nms = 32)

Paciorek et al. (2009) [53] U.S. 2004 MODIS, MISR,
GEOS GAM 0.573 a,b (MODIS, Yearly), 0.572 a,b (GEOS, Yearly);

0.825 a,b (MODIS, Monthly), 0.825 a,b (GEOS, Monthly)

Schaap et al. (2009) [54] Netherlands 2006–2007 MODIS MLR 0.518 a,b

Zhang et al. (2009) [21] U.S. 2005–2006 MODIS MLR 0.600 a,b (Southeast U.S.), 0.200 a,b (Southwest U.S.), (Nms = 521 for U.S.)

Di Nicolantonio et al. (2010) [55] Italy 2007 MODIS CTM 0.680 a,b (Terra MODIS, Nms = 23), 0.590 a,b (Aqua MODIS, Nms = 23),
0.700 a,b (Terra and Aqua MODIS, Nms = 23)

Leon et al. (2010) [25] Europe,
Africa 2006–2008 POLDER MLR 0.250 a,b (Nms = 28)

Tian et al. (2010) [56] Canada 2004 MODIS Semi-empirical model 0.650 a,b (Hourly, Nms = 30)

van Donkelaar et al. (2010) [57] Global 2001–2006 MODIS, MISR CTM 0.593 a,b (North America, Nms = 1057),
0.689 a,b (Elsewhere, Nms = 244)

Wang et al. (2010) [58] China 2007–2008 MODIS LC 0.470 a (Nss = 1, Nms = 20)

Hu et al. (2011) [59] U.S. 2003–2004 MODIS GWR, LC 0~1 a,b (GWR, Nms = 877), 0.449 a,b (LC, Nms = 877)

Hystad et al. (2011) [60] Canada 2006 MODIS, MISR LUR 0.460 *,a,b (Nms = 177)

Kloog et al. (2011) [33] U.S. 2000–2008 MODIS MEM 0.830 *,a,b (with available AOD, Nms = 78),
0.810 *,a,b (without available AOD, Nms = 78)

Lee et al. (2011) [19] U.S. 2003 MODIS MEM 0.970 a,b (Nms = 26), 0.920 *,a,b (Nms = 26)

Wu et al. (2011) [61] China 2007–2008 MODIS ANN 0.030 a,b (Hourly in summer, Nms = 10),
0.580 a,b (Hourly in winter, Nms = 10)

Chudnovsky et al. (2012) [35] U.S. 2003 GEOS MEM 0.970 a,b (Nms = 26), 0.920 *,a,b (Nms = 26)

Hystad et al. (2012) [62] Canada 1975–1994 MODIS, MISR CTM 0.670 a,b (Nms = 25)

Kloog et al. (2012) [34] U.S. 2000–2008 MODIS MEM 0.850 *,a,b (Nss = 8, Nms = 161)

Lee et al. (2012) [63] U.S. 2001–2006 MODIS, MISR CTM 0.200~0.820 a,b
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Table 1. Cont.

Author (Published Year) Study Area Study Period Source of AOD Retrieved Model R2 of Model (CV-R2)

Lee et al. (2012) [64] U.S. 2000–2008 MODIS MEM 0.930 a,b (MEM for available AOD, Nms = 69),
0.880 *,a,b (MEM for available AOD, Nms = 69)

Liu et al. (2012) [65] China 2008 MODIS GAM 0.563 a (Adjusted, Nss = 1, Nms = 3); 0.757 a (Unadjusted, Nss = 1, Nms = 3);
0.372 *,a (Adjusted, Nss = 1, Nms = 3), 0.608 *,a (Unadjusted, Nss = 1, Nms = 3)

Mao et al. (2012) [66] U.S. 2005 MODIS LUR 0.648 a,b (Unadjusted, Nms = 34), 0.626 a,b (Adjusted, Nms = 34), 0.58 *,a,b

(Nms = 34)

van Donkelaar et al. (2012) [67] U.S. 2004–2009 MODIS, MISR CTM 0.689 b (for day of June 27, 2005. Nms = 1482)

Wu et al. (2012) [68] China 2007–2008 MODIS ANN 0.430 a,b (Nms = 7)

Beckerman et al. (2013) [69] U.S. 2001–2006 - LUR 0.650 *,a,b (Monthly, Nms = 4119)

Beckerman et al. (2013) [70] U.S. 1991–2008 GEOS LUR 0.630 *,a,b (LUR, Nms = 1464), 0.790 *,a,b (LUR and BMEM, Nms = 1464)

Chudnovsky et al. (2013) [71] U.S. 2003 MODIS LC 0.470 a (New England), 0.620 a (Boston), Nms = 26 for U.S.

Chudnovsky et al. (2013) [72] U.S. 2002–2008 MODIS MEM 0.500 *,a,b (New England), 0.860 *,a,b (Boston), Nms = 26 for U.S.

Cordero et al. (2013) [73] U.S. 2005–2006 MODIS, GEOS MLR 0.860 a (Urban areas in summer, Nms = 39)

Hu et al. (2013) [74] U.S. 2003 MODIS GWR 0.600 a,b (NARR, Nms = 119), 0.610 a,b (NLDAS, Nms = 119),
0.672 *,a,b (NARR, Nms = 119), 0.706 *,a,b (NLDAS, Nms = 119)

Kumar et al. (2013) [75] U.S. 2000–2009 MODIS MLR 0~1 a,b (Nms = 5)

Saunders et al. (2013) [76] U.S. 2003–2007 MODIS MLR 0.760 a,b (Winter)

Strawa et al. (2013) [77] U.S. 2004–2008 MODIS GAM 0.770 a,b

Tao et al. (2013) [17] China 2007–2008 MODIS MLR 0.610 a,b (Beijing and its surrounding regions, Nms = 17)

Chang et al. (2014) [78] U.S. 2003–2005 MODIS LUR 0.780 *,a,b (Nms = 85)

Chiu et al. (2014) [79] U.S. 2002–2009 MODIS MEM 0.830 *,a,b (with available AOD, Nms = 78);
0.810 *,a,b (without available AOD, Nms = 78)

Hu et al. (2014) [80] U.S. 2003 MODIS TSM 0.830 a,b,0.670 *,a,b

Hu et al. (2014) [81] U.S. 2001–2010 MODIS, MISR TSM 0.710~0.850 a,b (for year 2001–2010),
0.62~0.78 a,b (for year 2001–2010)

Kloog et al. (2014) [82] U.S. 2003–2011 MODIS MEM 0.880 *,a,b (Nms = 161)

Kloog et al. (2014) [83] U.S. 2000–2006 MODIS MEM 0.810 *,a,b (Nms = 161)

Kim et al. (2014) [84] Korea 2001–2010 MODIS CTM 0.440 *,a,b (for PM2.5 sulphate), 0.370 *,a,b (for PM2.5 dust),
0.230 *,a,b (for PM2.5 smoke)

Lai et al. (2014) [85] Global 2012 MODIS MLR 0.850 a,b (The best, Nms = 31)
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Table 1. Cont.

Author (Published Year) Study Area Study Period Source of AOD Retrieved Model R2 of Model (CV-R2)

Lary et al. (2014) [28] Global 1997–2014 Sea WIFS,
MODIS

Machine-learning
regression 0.920 a,b (N = 8329)

Lee et al. (2014) [86] U.S. 2000–2008 MODIS MEM
0.890 a,b (for retrieval days, Nms = 69),
0.860 *,a,b (for retrieval days, Nms = 69),
0.790 *,a,b (for non-retrieval days, Nms = 69)

Ma et al. (2014) [87] China 2012–2013 MODIS, MISR GWR 0.710 a,b (Nss = 113, Nms = 835), 0.640 *,a,b (Nss = 113, Nms = 835)

Rush et al. (2014) [88] U.S. 2001 MODIS Kriging 0.815 b (Northeast summer);
0.800 b (Industrial Midwest summer)

Song et al. (2014) [89] China 2012–2013 MODIS GWR 0.738 a,b (PRD, Nms = 37)

Toth et al. (2014) [30] U.S. 2008–2009 MODIS, MISR,
CALIOP LC

0.130 a,b (Aqua MODIS, Hourly, Nms = 102),
0.090 a,b (Terra MODIS, Hourly, Nms = 102),
0.090 a,b (MISR, Hourly, Nms = 102);
0.040 a,b (Aqua MODIS, Daily, Nms = 991),
0.063 a,b (Terra MODIS, Daily, Nms = 991),
0.063 a,b (MISR, Daily, Nms = 991)

Chan et al. (2015) [90] U.S. 2003–2009 MODIS Kriging 0.880 *,a,b

Coker et al. (2015) [91] U.S. 1995–2006 - LUR 0.650 *,a,b

Geng et al. (2015) [92] China 2006–2012 MODIS, MISR CTM 0.548 a,b (Nms = 46)

Han et al. (2015) [93] China 2011 MODIS MLR 0.624 a (All dust data but filter out aloft-dust-layer, Nss = 1);
0.548 a (All non-dust data, Nss = 1)

Just et al. (2015) [94] Mexico 2004–2014 MODIS MEM 0.724 *,a (Nss = 1, Nms = 12)

Kloog et al. (2015) [95] Israel 2003–2013 MODIS MEM 0.720 *,a,b (Nms = 45)

Leon Hsu et al. (2015) [96] U.S. 2002–2009 MISR MEM 0.830 *,a,b (with available AOD, Nms = 78),
0.810 *,a,b (without available AOD, Nms = 78)

Lee et al. (2015) [12] U.S. 2007–2011 MODIS MEM 0.770 *,a,b, 0.810 *,a,b, 0.700 *,a,b for region 1, 2, 3 (Nms = 277)

Lee et al. (2015) [7] U.S. 2003–2011 MODIS MEM 0.770 *,a,b, 0.810 *,a,b, 0.700 *,a,b for region 1, 2, 3 (Nms = 257)

Li et al. (2015) [29] U.S. 2005–2010 MODIS, MISR,
SeaWiFS, OMI CMCA, MCA

CMCA: 0.600 a,b (MODIS/MISRR/SeaWiFS/OMI, Nms = 98),
0.792 a,b (for year between 2005 and 2010, Nms = 198);
MCA: 0.828 a,b (for year between 2005 and 2010, Nms = 98)

Lin et al. (2015) [97] China 2013 MODIS Semi-empirical model 0.810 a,b (Nms = 565, Yearly), 0.578a,b (Nms = 565, Monthly)

McHenry et al. (2015) [98] U.S. 2002 MODIS CMAQ 0.468 a,b (yearly)

Nguyen et al. (2015) [99] Vietnam 2011–2012 MODIS SVR, MLR 0.352 a,b (SVR), 0.358 a,b (MLR)

Song et al. (2015) [100] China 2013 MODIS GAM 0.691 a (Nss = 1, Nms = 13)

van Donkelaar et al. (2015) [101] U.S. 2004–2008 MODIS CTM 0.620 a,b (Unadjusted, Nms = 1253), 0.820 a,b (Adjusted, Nms = 1253),
0.780 *,a,b (Nms = 1253)
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Table 1. Cont.

Author (Published Year) Study Area Study Period Source of AOD Retrieved Model R2 of Model (CV-R2)

van Donkelaar et al. (2015) [27] Global 1998–2012 MODIS, MISR
SeaWiFS CTM 0.656 a,b (North America and Europe, Nms = 210)

Wong et al. (2015) [102] China 2000–2011 - SEC 0.360

Xie et al. (2015) [103] China 2013–2014 MODIS MEM 0.810~0.830 a (various between districts, Nss = 1, Nms = 35),
0.750~0.790 *,a (various between districts, Nss = 1, Nms = 35)

Xu et al. (2015) [104] China 2013 GOCI CTM 0.656 a,b (Yearly, Nms = 494)

You et al. (2015) [105] China 2013 MODIS, MISR Nonlinear regression
model

0.670 a (MODIS, Nss = 1, Nms = 13),
0.720 a (MISR, Nss = 1, Nms = 13)

Zhang et al. (2015) [106] China 2013 MODIS MLR 0.462 a (Hourly, Nss = 1, Nms = 15)

Bai et al. (2016) [107] China 2015 MODIS GTWR, OLS, GWR,
TWR

0.960 a,b (GTWR, Nms = 37), 0.870 *,a,b (GTWR, Nms = 37);
0.350 a,b (OLS, Nms = 37), 0.410 a,b (OLS, Nms = 37);
0.590 a,b (GWR, Nms = 37), 0.600 a,b (GWR, Nms = 37);
0.630 a,b (TWR, Nms = 37), 0.680 a,b (TWR, Nms = 37)

Beloconi et al. (2016) [108] UK 2002–2012 MODIS Kriging, MEM 0.040 *,a (Kriging, Nss = 1),0.846 *,a (MEM, Nss = 1)

Crouse et al. (2016) [109] Canada 2001–2010 MODIS, MISR,
SeaWiFS CTM 0.578 a,b

Di et al. (2016) [110] U.S. 2000–2012 MODIS ANN 0.840 * a,b (Nms = 1928)

Di et al. (2016) [111] U.S. 2001–2010 - ANN 0.850 ** a,b (Nms = 154)

Girguis et al. (2016) [112] U.S. 2001–2008 MODIS MEM 0.780~0.880 *,a,b (for year 2001–2008, Nms = 35)

He et al. (2016) [113] China 2014–2015 MODIS LC 0.723 a,b (Nss = 6, Nms = 82)

Kloog et al. (2016) [114] U.S. 2000–2008 MODIS, MISR MEM 0.820 *,a,b

Karimian et al. (2016) [115] China 2013 MODIS Improved LC 0.500 a (Terra MODIS, Nss = 1, Nms = 8),
0.566 a (Aqua MODIS, Nss = 1, Nms = 8)

Lee et al. (2016) [116] U.S. 2006–2012 MODIS MEM 0.666 *,a,b (Nms = 87)

Lin et al. (2016) [117] China 2000–2014 MODIS LC 0.672 a,b (Monthly, 2000–2014, Nms = 3094),
0.608 a,b (Yearly, 2013, Nms = 76), 0.548 (Yearly, 2014, Nms = 86)

Lv et al. (2016) [118] China 2014 MODIS Bayesian model 0.780 *,a,b (Nss = 53, Nms = 298)

Ma et al. (2016) [87] China 2013 MODIS Improved MEM

0.725 *,a,b (Nested MEM, Nss = 5, Nms = 115),
0.724 *,a,b (Non-nested MEM, Nss = 5, Nms = 115);
0.486 **,a,b (Nested MEM, Nss = 5, Nms = 115),
0.230 **,a,b (Non-nested MEM, Nss = 5, Nms = 115)

Ma et al. (2016) [119] China 2004–2013 MODIS TSM 0.790 *,a,b (Nss = 205, Nms = 1185)

Shi et al. (2016) [120] U.S. 2003–2008 MODIS MEM 0.870 *,a,b

Strickland et al. (2016) [121] U.S. 2002–2010 MODIS TSM 0.710~0.85 a,b (Yearly)
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Table 1. Cont.

Author (Published Year) Study Area Study Period Source of AOD Retrieved Model R2 of Model (CV-R2)

Stieb et al. (2016) [122] Canada 1999–2008 MODIS LUR 0.590 *,a,b (Nms = 241)

van Donkelaar et al. (2016) [123] Global 1998–2014 MODIS, MISR,
SeaWiFS CTM and GWR 0.810 *,a,b

Wang et al. (2016) [124] Canada 2009 MODIS CTM 0.860 a (Daily, Nss = 1, Nms = 10), 0.930 a (Monthly, Nss = 1, Nms = 10)

You et al. (2016) [125] China 2014 MODIS GWR 0.810 a,b (Nms = 943), 0.790 *,a,b (Nms = 943)

You et al. (2016) [126] China 2014 MODIS, MISR GWR 0.760 *,a,b (MODIS, Nms = 943), 0.810 *,a,b (MISR, Nms = 943)

Zheng et al. (2016) [127] China 2013 MODIS MEM 0.770 *,a,b (BTH, Nss = 3, Nms = 66), 0.800 *,a,b (YRD, Nss = 15, Nms = 56),
0.800 *,a,b (PRD, Nss = 11, Nms = 55)

Zou et al. (2016) [128] China 2013 MODIS GWR, OLS 0.750 a,b (GWR, Nss = 3, Nms = 52), 0.530 a,b (OLS, Nss = 3, Nms = 52)

* Sample-based CV-R2: Sample-based Cross Validated-coefficient of determination; ** DOY-based CV-R2: Day-of Year-based Cross Validated-coefficient of determination; a,b denotes
Temporal and Spatial of R2, respectively; R2 denotes daily PM2.5 expect for note with monthly and yearly; Nms denotes number of PM2.5 monitoring site; Nss denotes number of study
site at city level. The list of abbreviations: (1) Satellite Sensors: MODIS, Moderate Resolution Imaging Spectrometer; MISR, Multi-Angle Imaging Spectrometer; GEOS, Geostationary
Operational Environment Satellite; SeaWiFS, Sea-viewing Wide Field-of-view Sensor; POLDER, Polarization of Earth’s Reflectance and Directionality; CALIOP, Cloud-Aerosol
Lidar with Orthogonal Polarization; GOCI, Geostationary Ocean Color Imager; OMI, Ozone Monitoring Instrument; (2) Derived models: LC, Linear Correlations; MLR, Multiple
Linear Regression; LUR, Land Use Regression; GAM, Generalized Additive Model; MEM, Mixed-Effect Model; CTM, Chemical Transport Model; GLM, General Linear regression
Model; ANN, Artificial Neural Networks; TSM, Two-Stage Model; SVR, Support Vector Regression; GTWR, Geographically and Temporally Weighted Regression; TWR, Temporally
Weighted Regression; TVM, Two-Variate Method; MVM, Multivariate Method; OLS, Ordinary Least Squares model; SEC, Surface Extinction Coefficient; Nested MEM, Nested
Mixed Effects Model; Non-nested MEM, Non-nested Mixed Effects Model; DSA, Deletion/substitution/addition; BMEM, Bayesian Maximum Entropy method; MCA, Maximum
Covariance Analysis; CMCA, Combined Maximum Covariance Analysis (3) R2 of model, Coefficient of determination of model: NARR, North American Regional Reanalysis; NLDAS,
North American Land Data Assimilation System; BTH, Beijing-Tianjin-Hebei region; YRD, Yangtze River Delta region; PRD, Pearl River Delta region.



Atmosphere 2016, 7, 129 10 of 25

Of these 116 studies, 25 used Multiple Linear Regression (MLR), 23 used the Mixed-Effect
Model (MEM), 16 used the Chemical Transport Model (CTM), and 10 used Geographically Weighted
Regression (GWR), while Linear Correlations (LC), the Generalized Additive Model (GAM), Land Use
Regression (LUR) and others models were found in 12 studies, six studies, seven studies and 27 studies,
respectively (Figures 2 and 3).
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4. Discussion

Satellite remote sensing technology plays an essential role in the field of meteorology because of
its highly accurate prediction of meteorological disasters. Recently, this technology has also been used
in the prediction of daily air pollution (PM2.5) levels. Although PM2.5 data can be obtained from AOD
measured by ground-based remote sensing equipment [129], it is more meaningful to predict PM2.5

levels from satellite observations. From our study, we concluded that MLR, MEM, CTM, and GWR
were the models most commonly used to predict PM2.5 levels.
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4.1. Multiple Linear Regression

4.1.1. Theory Background and Application

MLR has been used to predict PM2.5 from satellite AOD since 2005. In this model, PM2.5 measured
at ground level PM2.5 was set as the dependent variable, and AOD was set as the independent variable.
Several factors were also included in the model as covariates, including humidity, temperature, wind
speed, wind direction, aerosol type, and height of the boundary layer. MLR was often used in earlier
studies to predict PM2.5 levels. For instance, Liu et al. [38] used this model to analyze three area types
(city, and suburb and countryside) in the eastern United States in 2001. They reported that coefficients
were quite low to some extent and also varied greatly between different regions; R2 values were
0.420, 0.490, 0.590 and 0.430 in city, suburban, countryside and whole area, respectively. The low R2

value showed above indicated that the inclusion of covariates (such as relative humidity, height of
the boundary layer, season variable, etc.) in MLR models requires further discussion [33]. In contrast,
R2 value reached up to 0.960 in Gupta’s study when certain conditions (weather condition, boundary
layer heights and others conditions) were met [41].

More recently, in order to improve model performance, some studies have explored covariate
factors in the MLR model under different conditions [17,20,21,24–26,39–41,46,47,49,50,54,75]. A few
covariate factors, such as relative humidity and height of the boundary layer, were regarded as
significant enough to affect and even invert the relationships between AOD and PM2.5. In 2013,
Cordero et al. [73] predicted PM2.5 levels by applying both the satellite-based MLR method and
the Community Multi-Scale Air Quality (CMAQ) model. Results showed that the satellite-based
MLR method performed better than the CMAQ model during summer: R2 values ≥0.423 (MODIS),
R2 values ≥0.137 (CMAQ). However, the R2 value increased to 0.740 when the two models were
combined [73]. In 2015, Han et al. carried out affecting factors analyses between AOD and PM2.5 in
Nanjing [93]. The authors found that aerosol type and height of the boundary layer were significant
factors in the prediction of PM2.5 levels. They also stated that R2 value was 0.624 with only aerosol type
adjusted, and R2 value was 0.548 when both aforementioned significant factors were adjusted [93].

4.1.2. Advantages and Disadvantages

In summary, the determination coefficients of MLR were relatively higher than those of the linear
correlation model, and a confounding bias could be avoided by including relevant covariates into the
model. However, there are several limitations. Some important covariates, such as seasonal variation
of the aerosol, regional variation, and land use information, were missing from the models [93].
Additionally, the accuracy and resolution of the satellite-derived AOD and meteorological data was
low [38], which can lead to an information bias.

4.2. Mixed-Effect Model

4.2.1. Theory Background and Application

In early research, missing AOD data was an essential factor in the estimation of PM2.5 from
AOD, and the method used to compensate for missing AOD data is a very important factor in the
precision and accuracy of the derivation. Kloog et al. [33], from Harvard School of Public Health, first
proposed that satellite-derived AOD could be included in the three-stage MEM and they applied this
approach in New England in 2011. Based on the AOD day-specific correction mixed-effect model of
Lee et al. [19], they took meteorological variables and classic land use variables into the MEM [34].
The MEM also used the inverse distance weight method (IDW), cluster analysis, GAM and generalized
additive mixed model (GAMM) to deal with missing AOD values so that daily ground PM2.5 levels
could be predicted in a wide range [34]. If missing AOD presented non-random distribution, AOD
data needed to be corrected by meteorological factors using the inverse probability weight method
(IPW) [82].
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MEM has been applied in many regions. In New England, Kloog et al. [33] constructed their
own MEM, based on MEM of Lee et al., in 2011 (CV R2 value = 0.830, for days with available AOD
data; 0.810, for days without AOD data). The distinctive feature of the model of Kloog et al. is its
inclusion of meteorological variables (such as temperature, wind speed and visibility) and land use
variables (such as elevation, percentage of open spaces, area emissions, point emissions and distance
to major roads) into the model, which is appropriate for studying acute and chronic health effects.
Since then, many researchers, including Kloog, Madrigano, Chiu and others, have used MEM to study
acute and chronic health effects [79,96,130–133], and it has performed well. In 2012, by using GEOS
AOD data and adding a surface reflection variable into MEM, Chudnovsky et al. [35] showed a high
predictive value of CV-R2 = 0.920. This study also proved that high resolution GEOS AOD may be a
better predictor of urban PM2.5 than rough resolution MODIS AOD [35]. Lee et al. [64] found that the
R2 value of MEM could reach 0.830 if missing AOD value were filled using a combination of cluster
analysis and generalized additive models. In the mid-Atlantic region, Kloog et al. [34] improved the
MEM by adopting IPW for non-random missing AOD data, and obtained a value of 0.850 for the
cross-validation of R2. Kloog et al. [34] also established PM2.5 predictive models in different regions by
adding traffic density, population density and distance to the point emission variables.

In 2013, in order to take advantage of high resolution AOD products. Chudnovsky et al. [56]
developed a MODIS based Multi-Angle Implementation of Atmospheric Correction algorithm
(MAIAC) and used this new algorithm to improve the inversion resolution of MODIS AOD products
(from 10 × 10 km to 1 × 1 km). In their results, R2 value reached up to 0.500 in New England
and 0.860 in Boston area [72]. The MAIAC algorithm has since been widely applied in MEM
studies [7,82,83,94,120,134]. Kloog et al. [83] obtained a CV-R2 value of 0.810 in mid-western
United States in 2000–2006. In a later study based on an early MEM [33,34], Kloog et al. performed a
GAM to address missing AOD values, obtaining an R2 value of 0.880 in the northeastern United States
(New England, New York and New Jersey) [82]. In New England, Alexeeff et al. [135] further
employed the MEM model with [34,131] Kriging and land use regression to describe an epidemiological
relationship between AOD and predicted PM2.5 in 2003. The following year, Shi et al. [120] used
MEM to predict PM2.5 using MODIS AOD data collected between 2003 and 2008, and they obtained
consistent results (R2 value = 0.890) for days with available AOD data and without available AOD
data. This method was also successfully applied in studies on the relationship between low PM2.5

exposure and mortality.
In recognition of regional geographical differences, Lee et al. [7] predicted PM2.5 concentrations

using IPW in seven southeastern states of the United States in 2016, and they obtained three coefficients
of determination (0.770, 0.810, and 0.700) from three different geographical area types. They suggested
that their PM2.5 estimation methods could be applied from urban areas to rural areas. Just et al. [94]
analyzed the geographical distribution of PM2.5 in Mexico in 2004–2014. They obtained an R2 value
of 0.724 using MEM and showed that precipitation and height of the boundary layer are both
important factors influencing the relationship between AOD and PM2.5 [94]. Furthermore, with
AOD derived from Medium Resolution Imaging Spectrometer (MERIS) and Advanced Along-Track
Scanning Radiometer (AATSR) synergistic observations. Beloconi et al. [108] applied MEM to the
evaluation of the day-specific and site-specific random effects in London. Their results showed a CV-R2

value of 0.846 between 2002 and 2012. Ma et al. [136] provided an improved MEM to address data
missing from satellite observation as well as ground-level measurements.

4.2.2. Advantages and Disadvantages

To sum up, MEM had the following advantages: (1) It had a relatively high predicting coefficient
of determination. The R2 value could generally reach up to 0.800 or higher. R2 values of time and
spatial consistency were also high; they could reach up to 0.700 or higher among different regions.
Besides, R2 value could be greatly enhanced through the use of MAIAC algorithms [7,72,82]; (2) MEM
could be widely applied to the prediction of PM2.5 at a regional level by using different land use
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and meteorological variables for model calibration; (3) MEM can be used to predict daily PM2.5

concentrations, and has been applied in studies on the acute and chronic health effects of PM2.5

exposure in New England, the Mid-Atlantic and other regions of the United States. These studies can
be extended to other regions in the future [15]. The model may also be used to explore the difference
between satellite-derived AOD-based PM2.5 data and ground based PM2.5 data in health effect studies.

MEM has the following disadvantages: (1) Due to the lack of ground-level PM2.5 monitoring data
in certain areas, the PM2.5 monitoring data could not meet the requirements of Kriging in MEM, which
affected the accuracy of the results [72]; (2) The determination of correlation between AOD and PM2.5

may decrease when only total AOD is applied. It is not clear which of the aerosols influencing AOD
(such as sulfate, nitrate, ammonium, carbonaceous, mineral dust, and sea salt) plays a major role in the
total AOD, or how much other air pollutants affect this correlation [33,94,137]; (3) Land use and traffic
pollution information is hard to collect.

4.3. Chemistry Transport Model

4.3.1. Theory Background and Application

Based on the characteristics of vertical distribution and transmission of AOD, Liu et al. [18]
proposed the Global atmospheric chemistry model (GEOS-CHEM), which is a prediction model of
PM2.5 based on satellite AOD. Following Liu and coworkers’ study [138], van Donkelaar et al. [43]
developed the CTM which calibrates the height of the boundary layer and the humidity of air.
Considering the composition and distribution of AOD and utilizing emissions listing data as well
as daily emission patterns published in European and other countries, van Donkelaaar et al. built a
precise CTM formula in 2006. In 2010, they simplified the CTM by redefining the association between
AOD and PM2.5 as a conversion factor. CTM can now be used on a global as well as a local scales [6,57],
and has attracted extensive interest [139,140].

This model was employed in different regions between 2010 and 2012. Di Nicolantonio and
Cacciari [55] applied the method in North Italy and obtained different results for satellite-based PM2.5

predicting results (R2 values of 0.680 (Terra MODIS), 0.590 (Aqua MODIS), 0.700 (Terra and Aqua
MODIS, respectively). Hystad et al. [62] obtained an R2 value of 0.410 for the first time to add land use
variables in Canada using CTM [57]. Additionally, in a comparison between IDW-adjusted CTM and
MLR, IDW-adjusted CTM (R2 value = 0.510 per year) performed better than MLR (R2 value = 0.330
per year) [62,67]. Lee et al. [63] made a comparison between the Kriging method and CTM in the
United States. Although both methods gave consistent results, CTM had better applicability and
higher accuracy, especially in areas with few ground level monitoring sites. Further studies by
van Donkelaar et al. have shown that meteorological factors can calibrate and reduce the system
error and spatial smoothing of the IDW method can reduce the random error, eventually extending
the spatiotemporal prediction scale [67]. Crouse [141] not only obtained a high R2 value (0.792) in
11 Canadian cities in 1987–2001, but also successfully applied their results to the study of long-term
health effects of PM2.5 exposure. Following van Donkelaar’s study [57], others studies conducted by
Villeneuve, Chen, To and Brauer [142–146] focused on acute and chronic health effects and on the
global burden of disease.

In addition, the estimates of PM2.5 from MODIS AOD in the above studies were somewhat
varied. In 2013, van Donkelaar et al. [147] added land use type data, which were used to quantify
the weight of AOD data, and proposed Optimal Estimation (OE) in order to improve the predictive
ability of AOD. More recently, Wang et al. [124] have provided an improved AOD retrieval algorithm
for MODIS at 1 km resolution that can be retrieve AOD at high spatial resolutions at intra-urban
scales. These MODIS-retrieved AODs are used to predict ground level PM2.5 using aerosol vertical
profiles and local scale factors obtained from the CTM simulation. Daily R2 value = 0.860 and monthly
R2 value = 0.930 were obtained from data collected over the city of Montreal, Canada [124].
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At the global level, in a study similar to van Donkelaar’s 2010 study, Boys and Martin [148]
completed a global ground level prediction of PM2.5 in 2014, which integrated global AOD data
collected from the MISR and SeaWiFS AOD (1 km × 1 km) satellite sensor between 1998 and 2012.
They also included a few effecting factors in the CTM, such as the vertical structure of aerosol
extinction, relative humidity, aerosol size and component of aerosol variables. Their results showed
that PM2.5 levels in East America, the Arabian Peninsula, Eastern and southern Asia were relatively
consistent [148]. In a different study, van Donkelaar et al. [101] combined GWR with CTM, and
obtained a higher value of CV-R2 (0.780) with high resolution in North America. In the same year,
van Donkelaar et al. [27] improved the CTM approach to the prediction of PM2.5 concentrations at a
global level. Their research integrated AOD data from three satellites in order to avoid negative effects
from the source variations of AOD. The study obtained high R2 values (0.656) for North America in
2001–2010, indicating that PM2.5 prediction could be feasible at the global level.

4.3.2. Advantages and Disadvantages

Based on above studies, the advantages of CTM are: (1) it can predict PM2.5 concentrations at
ground level without PM2.5 data from ground monitors [127]; and (2) it takes the component of AOD
and the effects of other pollutants into account, and has been widely used in Canada, North America
and South America, for predicting on a global scale [27,28,149,150]. CTM is currently central to health
effect analysis related to PM2.5 components [109]. The disadvantages of CTM are: (1) the prediction
effect was relatively low and variant among different regions. Considering the poor performance of
CTM, lower R2 values can lead to a high exposure bias in health effect studies; (2) it will consume
time, energy and financial resources to collect the necessary chemical and physical information on
PM2.5 [57]; (3) due to the lack of pollutants emissions type and emissions listing data in developed
countries, it is hard to meet the conditions of application of CTM in China, India and other developing
countries [27]; and (4) other pollutants (SO2, O3, etc.) have different inversion resolutions compared
with PM2.5 [143].

4.4. Geographical Weighted Regression

4.4.1. Theory Background and Application

Based on the assumption that “regression coefficient is a function of the observation point’s
spatial position in linear regression” with spatial weight assigned according to the distance
between observation points, Geographical Weighted Regression (GWR) was first proposed [151,152].
This spatial regression technique reflects spatial variability and non-smooth character, and could
provide a regional-level regression model [151–153]. In 2009, Hu et al. [32] introduced AOD into
GWR and carried out a prediction of PM2.5 levels in the United States. After that, Ma [87] further
optimized GWR in 2014 by taking AOD, land use variables as the independent variables, and PM2.5

concentrations as the dependent variable. Meanwhile, based on the differences between regions in
PM2.5 ground monitoring, spatial weight assignment was developed and applied to each region with
the quantity of AOD data. If a large proportion of AOD data was missing, we could select certain
buffer areas for each spatial observation point and fill in the vacancy according to the corrected Akaike
Information Criterion. Thus, spatial distribution of regression parameter gained, and the GWR model
could explain the effects of the spatial autocorrelation within a certain area when spatial aggregation
occurred for a certain variable [87,105,107,128].

Hu’s initial investigation on GWR found that it had a low R2 value compared with MEM and CTM,
probably because not all studies took meteorological factors and land use factors into account [32].
Based on regional differences, Hu et al. [59] brought meteorological variables and land use variables
into the GWR to predict PM2.5 concentrations in North America. Results showed that R2 values
improved significantly when these variables were considered (R2 = 0.672 (North American Regional
Reanalysis data), and R2 = 0.706 (North American Land Data Assimilation System data)). However,
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large spatial variability and instability occurred in these variables. Further studies showed that PM2.5

concentrations were higher in urban areas, and lower in rural villages or mountain areas.
In order to compensate the basis without considering the cross-validation, Ma et al. [87] expanded

the National GWR model with data from the newly built national monitoring network to predict PM2.5

levels in China, reporting a CV-R2 value of 0.640. This result indicated that it was feasible to estimate
PM2.5 levels in China using satellite AOD combined with meteorological and land use data. The model
obtained similar results to those obtained by the CTM used by van Donkelaar in 2010, but GWR found
higher PM2.5 concentrations in rural areas. Similar results for national PM2.5 levels were found by
You et al. [126] with CV-R2 values of 0.760 and 0.810 for MODIS and MISR, respectively, in China.
Additionally, using 3-km resolution MODIS AOD in 2014, You et al. [125] confirmed that this GWR
approach is useful for estimating large-scale ground-level PM2.5 distributions in China.

4.4.2. Advantages and Disadvantages

From the studies above, the advantages of this model are: (1) PM2.5 estimation requires only
small amounts of data. For example, this model can work with the daily average, monthly average or
yearly average of both PM2.5 data alone or AOD data alone. Determination coefficients were also less
affected. Studies have shown that compared with CTM, GWR had a higher R2 value [87]; (2) Similar
to MEM, GWR used ground monitored PM2.5 values for AOD calibration, and it had a better model
performance than MLR. The disadvantages are: (1) since model construction depends on ground
monitoring data, model performance may be much less reliable in areas lacking ground monitoring
data; and (2) to our knowledge, GWR has only been employed in limited PM2.5 prediction studies with
the combination of satellite data [74,87,100,107,125,126,128], so the feasibility of applying it widely in
other regions needs to be investigated in further research.

4.5. Other Models

In addition to the models mentioned above, other researchers used linear correlations [16,30,
31,37,42,58,71,113,115,117], GAM [23,24,53,65,77], LUR [66,69,70,78,91,122], Kriging [88,90,108] or
the nonlinear regression model. Those PM2.5 estimating models all regard AOD as the primary
independent variable. As a result, the predictability of these models was limited. Their R2 values were
generally lower, and varied between different areas. However, these listed models have been gradually
optimized or integrated into other models, as with artificial neural networks (ANN, which incorporate
LUR in the CTM) [52,61,68,110,111] and the two stage model (TSM, which combine the GWR with
MEM) [80,81,119,121]. In recent years, with the development of the AOD-based mathematical model,
many new methods have been developed, such as geographically and temporally weighted regression
(GTWR) [107], support vector regression methods (SVR) [99] and machine learning regression (which
is a combination of SVR, Gauss neural network processes, Decision trees, and Random forests) [28].
Although these new methods had been proposed, their reliability and veracity need to be investigated
in further studies.

4.6. Summary

In terms of the accuracy of PM2.5 prediction, though no single model can replace all others, some
existing models have their advantages in the following areas. (1) Model predictability: MLR was
commonly used in early studies [17,20,21,24–26,39–41,46,47,49,50,54,75], whereas MEM and CTM
gradually became the dominant methods and replaced MLR after 2010. However, GWR has developed
at a slower pace with a limited number of studies to data, and had moderate performance [32,74,125,126].
Included studies showed that R2 value of MEM was higher than those of the other three models in
the same area [17,87,104,136]. Moreover, MAIAC algorithms, which led to a highly accurate of AOD,
were mostly used in MEM, significantly improving the R2 value of the model [7,35,83,120,135]. On the
global scale, CTM has been proven to be efficient for the mechanism of completing the prediction
from using partial AOD data by AOD component analysis [57]; (2) Adjusting factors: The number
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of these factors has increased due to the development of prediction models. Moreover, factors such
as atmospheric boundary layer height and relative humidity have become a permanent part of the
adjustment process. In early LC and MLR studies, adjusting factors were limited in number and scope,
and were mainly focused on meteorological factors (atmospheric boundary layer height, humidity,
temperature, wind speed, etc.) [38,39,41,42]. Later on, GAM took both meteorological factors and land
use factors into account, which increased the performances [23,77]. MEM and CTM also incorporated
more meteorological factors and land use factors; their R2 values proved to be satisfactory; (3) Missing
AOD: Although predicting of PM2.5 with satellite AOD has become the hotspot in remote sensing field,
missing values of AOD cannot be ignored, because the predicted reliability of PM2.5 could be affected
when the percentage of missing AOD values reach 60%. Among the four models, MEM systematically
and comprehensively described methods of dealing with missing AOD [137]; results of each method
could be found in different studies. CTM, on the other hand, filled in the vacancy by establishing
“buffer areas” or avoided the problem of missing AOD by assigning different weights to each area
according to the amount of AOD data. For the MLR, missing AOD was not processed.

5. Conclusions

The review showed that MEM performed best. CTM had strengths in the prediction of PM2.5

on a global scale. GWR was suitable for PM2.5 prediction on a regional scale. MLR was relatively
weak in terms of predictability. When land use information was included as an adjustment factor
in addition to meteorological factors, the accuracy of predictions greatly improved. Other models,
such as ANN, TSM and SVR, need to be further validated. We therefore suggest that the following
possibilities be considered in future studies: (1) the use of AOD data with higher resolution for more
accurate estimation of PM2.5 in relatively small areas; (2) the use of satellite-based predicting models
for historical PM2.5 prediction and retrospective study in areas lacking historical PM2.5 data; and (3) the
development prediction models not only for PM but also for other air pollutants (SO2, NO2), to extend
the applicability of predicting models.
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The following abbreviations are used in this manuscript:

AOD Aerosol Optical Depth
MODIS Moderate Resolution Imaging Spectrometer
MISR Multi-Angle Imaging Spectrometer
GEOS Geostationary Operational Environment Satellite
SeaWiFS Sea-viewing Wide Field-of-view Sensor
POLDER Polarization of Earth’s Reflectance and Directionality
CALIOP Cloud-Aerosol Lidar with Orthogonal Polarization
GOCI Geostationary Ocean Color Imager
OMI Ozone Monitoring Instrument (OMI)
AATSR Advanced Along-Track Scanning Radiometer
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MERIS Medium Resolution Imaging Spectrometer
LC Linear Correlations
MLR Multiple Linear Regression
LUR Land Use Regression
GAM Generalized Additive Model
MEM Mixed-Effect Model
CTM Chemical Transport Model
GLM General Linear regression Model
GWR Geographically weighted regression
TWR Temporally Weighted Regression
GTWR Geographically and Temporally Weighted Regression
ANN Artificial Neural Networks
SVR Support Vector Regression
MCA Maximum Covariance Analysis
CMCA Combined Maximum Covariance Analysis
TVM Two-variate method
MVM Multivariate method
OLS Ordinary Least Squares model
TSM Two-Stage Model
MAIAC Multi-Angle Implementation of Atmospheric Correction algorithm
DSA Deletion/Substitution/Addition
BMEM Bayesian Maximum Entropy method
Nested MEM Nested Mixed-Effect Model
Non-nested MEM Non-nested Mixed-Effect Model
SEC Surface Extinction Coefficient
BTH Beijing-Tianjin-Hebei region
PRD Pearl River Delta region
YRD Yangtze River Delta region
NARR North American Regional Reanalysis
NLDAS North American Land Data Assimilation System
Sample-based CV-R2 Sample-based Cross Validated-coefficient of determination
DOY-based CV-R2 Day-of-Year-based Cross Validated-coefficient of determination
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